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FOREWORD

This report presents the results of parametric studies on several
families of rocket grain configurations obtained by photoelastic
analysis. These results are presented graphically in the form of a
stress factor H as a function of the various parameters. In addition,
empirical relationships have been derived for most of the studies
conducted which represent the observed dependency. A section on the
application of the test results to more general engineering problems
is presented. 1In this section a comparison is made between a
recommended method of application and a limited number of numer<:al
solutions obtained via computer analysis.

The authors wish to acknowledge the able assistance in the conduct
of the experimental portion of this work of A. P. Waggoner and W. L.
Fourney.

This technical report has been reviewed and is approved.
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R. C. Fanning, ject Engineer
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ABSTRACT

This report presents the results of parametric studies on several
families of rocket grain configurations obrained by photoelastic analysis.
In an earlier paper the authors described 2 parametric investieation
of a family of grains which were defined by three parameters: N the
number of star points, a/b the port fraction, and a/ﬁ) the fillet
radius factor. The results of that study led to the following empirical
formula for the stress concentration factor,

H= l + a/b N-1/3 '1 +2+/al
1 - a/b ‘ V&P
L

In the present investigation the study has been extended to include
families requiring four parameters to complete their description. Four
additional families have been investigated tc determine the effect of
a) slot width, b) positive wedge angles of the star slot, c) negative
wedge angles of the star slot, and d) eccentricity of elliptically
shaped star tips. In each of the studies it is shown that the N'1/3
rule holds approximately, and empirical formulas similar to the one
given above have been derived in some cases.

A section on the aprlication of the test results to more general
engineering problems is presented. In this section a comparison is
ﬁade between a recommended method of application and a limited number
of numerical solutions obtained via computer analysis. Under the
worst set of conditions available, the streus calculations agreed
within 10% and the strain within 15%.

As a Tesult of the large number of parameters used in this study,
it is practical to obtain the maximum stress for most grain configura-

tions using the data presented.
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I.

INTRODUCTION

In the design of solid propellant rocket eangines, the use of
internal slot configurations has complicated the analysis of stress
and strain. Additional complications enter into the problem because
of the use of viscoelastic materials, elastic cases, and tapered
shapes and because of end effects and finite deformations. Ignoring
these complications for a moment, we might consider the problem of an
infinitely long, star-perforated cylindrical body of linearly elastic
material subjected to infinitesimal deformations. Even the solution
of this highly simplified problem defies exact analytical anelysis.
However, it may be solved by approximate methods of anaiysis or by
using the techniques of photoelasticity. II the solvtion to this
problem has some application in the solution of the even more diffi-
cult finite lergil, case-bonded, viscoelastic problem, then it serves
a worthwhile purpose. It will be shown that this is indeed the case.

In view of this, several photoerlastic investigations of stresses
in solid propellant rocket grains have been conducted.(l’z’B)* This
report pregents the results of a series of parametric tests on four
families of grain configurations. The geometry of each family is
completely characterized by four parameters.

The present results are compared to previous work by the
authors;(3) the agreement is excellent. An error analysis of the
data has been conducted; the method of analysis and the results are
outlined. The analysis indicates that the data which is presented is

accurate within + 5% over the range of interest.

*Nusbers enclosed in parentheses refer to References listed on Paje 48.
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I1I1.

CENERAL THEOKY !
The snlution to the problem of en infinirely long, star-perfovated
cylindrical body (Figure 1-a) is (by syametcy) independent of the E
"xial coordinate (which is taken to be the z coordinate), provided f
the ioading oiu the yl:iad-izal surfaces is independent of 2z and tte §
z comp..ent of all loads iz zero. The problem is classified as a
problem in plane strain. If the material ig homogeneous, isotropic,
and linearly elastic and if the body forces are zero, then the follow-
ing equations can be shown to govern the problem.(a)
s -
fie:4 equations for the stress components xx’ (7}y, Cf;y
‘OO‘H+ [Jen .
Dy t)y
0 T, D T,
A g (1)
D o,
V3O, + Oyy) = 0
XX yy
Constitutive equations relating strain to stress %
]

exx.,.l.%lz, {(1 - V)G - VO,

.
J

eyy-l‘gV{(l-z/)G;,y-Z/G'n} (2)




Auxilisry cquations for calculating the remaining stress
and strain components

€27 €xz 6yz " Oz ™ G_yz =0
3)
O,. = V(O + O—yy)
Now consider a thin slice cut from this cylindex and subjected to the
same load per unit area on the cylindrical surfaces (see Figure 1-b).
Thé upper and lower surfaces are assumed to be free of tractions.
This problem is classified as a problem in plane stress, and its

" solution is governed by the following set of equations.(l*)

Field equations for the ctress components Oxx> O-yy’ o-xy

DO0xx , B0y
Tx Dy

00, 0,
Xy W .
Sy el (4)

VAo, * a,) = 0

Constitutive equations relating stress to strain

XX XX yy

€ -%(o- - Vo)
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L I e SR




1 -
€yy = 3(0yy - VO (5)

Auxiliary equations for calculating the remaining stress
and strain components

O;z=o_xz=q-yz'€xz=€yz=o
Y (6)
€22 “E_(CI;X + (2;y)

In each problem, the field equations are to be solved subject to

certain boundary conditions. The stress components Uy,

(J;y’ CJ;Y
obtained from the solution are then substituted into the remai.ing
equations to find the complete stress-strain field. Notice that the
field equations of plane stress and plane strain, with zero body force,
are identical. Thus, if the stress boundary conditions for a problem
in plane strain are identical to the stress boundary conditions for a
problem in plane stress, the two solutions for Uyx, Oyy, O;y must
be the same and will be independent of material properties as long as
E and V do not enter the boundary conditions. This observation is
the basis for the appiication of photoelastic analysis to the rocket
grain (plane strain) problem.

Let us consider the specific case of a long circular cylinder

with a star-shaped cylindrical perforation (Figure l-a). If there

R
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are no body forces and if the surface tractions are a uniformly dis-
tributed pressure p, on the external cylindrical surface and a uni-

formly distributed pressure py on the internal cylindrical surface,

then the boundary conditions are:

External Surface:
Outward Normel n
-

-3
Surface Traction T = P,

Boundary Conditions

Oty + O-xy“y * “Poly

(7)
OuyPx + Ogyy = ~Pohy

Internal Surface:
Outward Normal m
- -
Surface Traction T = -pym

Boundary Conditions

Oxx * O'xymy = TPiMy

(8)
Oy * Tyymy = -PiTy

These boundary conditions are independent of E and V . Therefore,
e geometrically similar thin disk of any linearly elastic material,

loaded with the same internal and external pressure, will be subjected

to the same stress components O"xx, G_yy’ O—xy . Hence the stress
field in the disk may he obtained by the-metheds—ef-phetoelanticity-




The photoelastic test is performed in the following manner. A
thin disk model of the appropriate sghape is prepared from a material
that exhibits birefringence when subjecited to strain. This model
could then be loaded with internal pressure pi and external pressure
p; and viewed in a circular polariscope. The isochromatic fringe
pattern which would be observed is directly related to the difference
in principal stress, CTi - (3% , at each point in the model.

In practice, it is difficult to apply a uniform pressure pi to
the geometrically complicated inner boundary. It is much more con-
venient to apply only pé to the simple circular outer boundary.
Fortunately the solution for internal and external pressure can be
easily deduced from cbservations made on a model with external pressure
only. This result follows from the well known principle of super-
position for the linear theory of elasticity.

Consider two loading conditions applied to the disk. Loading A
congists of equal internal and external pressure pi . Loading B
consists of external pressure pé - pi and zero internal pressure.

It is clear that the superposition of the solutions to there two
problems is the solution for the problem with internal pressure pi
and external pressure pé . Problem B is convenient for photo-

elastic analysis. Problem A is a case of two-dimensional hydrostatic

loading and has the solution

g = O'yy - -pi
9




All directions in the x,y plane are principal directions. Thus

Oy =0, = -p; (9-a)

Since the equations which govern probiem B are linear, it is
clear that the magnitude of any stress component at any point in the
disk is linearly proportional to thie magnitude of the exter:al pressure.
If we let p, = p, - p; and if we designate the magnitude of the maxi-
mum stress which occurs in the solution to B for a given value of P,
by Oy , then Oy/p, will be a constant for all values of p, .
The determination of the value of this constant, as a function of
various parameters describing the star geometry, is the primary objec-
tive of this study.

In star configurations loaded with external pressure Py 9 the
maxiuum stress is found to occur on the inner boundary at the star
tip. Since the inner boundary is free from tractions, the principal
directions along the boundary are the directions perpendicular to and
tangent to the boundary. The principal stress acting on the surface
with a normal perpendicular to the boundery is zero. The principal
stresr acting on a surface with a normal parallel to the boundary, at
the point on the boundary where the maximum fringe order (difference
in principal stress) occurs is (Th . Since one principal stress is
zero, it followa that the magnitude of the difference of principal
stress lO’l - O'2| - 'O‘HI . The difference in principal stress is
directly related to the fringe order n observed at the point by the

stress optic law

oo %0 . o0 ol Mt bl e .0

EPT




Op- Op=%2 (10)

where K 1is the fringe constant and t 1is the model thickness} hence,

Oy can be directly determined from observation of the fringe order n

N e 4 SN
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III.

TESTING PROCEDURES

A test jig has been designed wbich allows a uniform pressure P
to be applied to the external periphery of the model. In practice
this pressure is supplied by a regulator from a high pressure aitrogen
bottle and may be varied between 0 and 500 psi. The ratio O'M/po
can be obtained from observations at one pressure. However, random
error will be reduced if a series of observations are wade at various
pressiares. The resulting curve of CTM versus p_ shiould be a s:raight
line, and its slope isrthe desired ratio CTﬂ/po .

The direct observable in these experiments is the fringe order n |,
which has been shown to be proportional to CTM . The experimental
procedure therefore is to measure the pressure Py which is required
to cause a first order fringe at the concentration point, the pressure
P, required to cause a second order fringe, etc., up to some maximum
fringe order dictated by the pressure limitations of the system or by
the limits of elasticity of the model. For the present series of tests
the pressure limit was usually reached between the sixth and eighth
fringe order. Thus six to eight data points were available on the P,
versus n curve, and a precise slope could be easily determined.
Moreover, either four or eight equal stress concentrations appear in
the model (The number depends upon geometry. See Figures 2 and 3.)
so that this procedure can be repeated four or eight times, and a
weighted average of the slopes is then used to determine the best value

of CTM/po for the particular geometry being tested. A least squares

——
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data reduction method has been used. It is described later in the
report. A typical set of curves of pressure versus fringe order is
shown in Figure 4.
In order to convert the direct experimental result n/po (fringe
order/pressure) in.> the desired quantity Oum/p, , it is necessary
o know the fringe constant K in the stress optic law, equation (10).
The fringe constant has been determined for each sheet of material
(CR-39) used in these tests. The value was derived from several tests
in which the fringe order versus the load F was observed in a specimen
for which CTi - CT} versus load was known from analytical conside.a-
tions. The particular test which was used was the diametral compression

of a solid disk (Figure 5). The stress solution of this problem 13(4)
O‘l- 0"2-._§.F_.. (11)

A typical curve of fringe order versus F 1is shown in Figure 5. As an
example of the consistency of the tests, ten specimens were tested from
Sheet #1, and the range of K observed was 93.4 + 1.0 psi-in/fringe.

Two additicnal tests were used to check the overall validity of
the test procedure. In one test, 10 thick-walled cylinders were loaded
with external pressure in the pressure jig. Since the stress solution
is known in this case from theory, the correlation between test results
and theory can be observed. The test results are shown in Figure 6.
Unfortunately, the test ig not too sensitive since the stress levels
for a given amount of external pressurc are low, so that within the

500 psi test limits only 3 or &4 fringes can be observed. 1in addition,

10
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the stress gradients are low so that the fringes are not sharply defined.

Nevertheless, the agreement between theory and experiment is good and,
because of the limitations inherent in the test, this discrepancy
probably indicates the maximum overall deviation to be expected between
the true values of H and the experimental values in this type of
testing.

To check consistency with previous experimental work, a number of
simple slot configurations were tested (Figure 7-a). The result of the
present tests is compared to previous test results in Figure 8. Para-
metric studies of this configuration have been published in Reference 3.

Excellent agreement was found between the two sets of data.

11
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1v.

DATA REDVICTION

Typical data from a test on one specific geometry consists of
the pressures corresponding to the first 6 to 8 fringe orders for each
of the locations where the maximum stress occurs. The objective of
the data reduction process is to extract from this set of 50 or 60
values of pressure the best value for the ratio -CTh/po

As a first step, the best value of Oy/p, 1is determined for
each of the locations where maximum stress occurs. (Jh/po is related
via the fringe constant to the slope of the best straight line through
the data presented in a pressure versus fringe order plot. If all of
the data is given equal weight, the slope of the best straight line
through the data can be found by a least mean squares ptocess.(s) If

the data is thought of as a set of M pairs of numbers (xi,yi) ,

then the best slope can be shown to be

H%xui - (%xi)( Zl)‘i)

Hi‘i - (in)

i=1 i=1

(12)

where y = AX + B . The standard deviation of A can be shown to be

at

Z(Ax +B - y)?
S = i=1 Vi i " (13)

M -2 i - zz x ) J

12




In this way, L values of best slope Ai , with corresponding stand-
ard deviations Sj » are calculated. The best value of A is then

taken to be a weighted average of these L values.

L 2
Zﬂj/SJ
A = best estimate of A= 1%;—-———- (14)

S 1/sj2
i=1

The standard deviation of I{ is calculated from

L
- 2
2 (A - Aj) L 2
2T - 1) Sus, (15)

A
2 =1
Vo=

g




RRRRLE N A &

v'

DATA REDUCTION EXAMPLE

The following raw data was obtained from Test #29.

Table 1

External
n Pressure
Fringe po Location of Stress Concentration
Order #1 #2 #3 #4 #5 #6 #7 #8
1 €2 58 61 S5 64 62 66 65
2 115 105 113 111 1:3 113 115 122
3 179 1469 171 172 177 173 179 187
4 231 225 227 234 228 229 230 244
5 293 284 284 | 295 293 284 288 | 305
6 357 347 | 348 JTSGO 357 350 |352 |373
Best Slope A 6.44 1 6.52] 6.63}6.21 | 6.45] 6.61 16.62 |6.18
Std. Daviation S 0.1010.12]0.09} 0.07}{ 0.14}]0.10 ] 0.12 |0.07

PRI T, W24 0514 - s

The bcat slope A is calculated for each point of stress concen-
tration using equation (12}. For exatple, fc~ stress concentration #1,
Mw g, t »0,246, A= 6,44, and S = 0.10. The value of A for each of
the eight points of stress concentration is shown in the above table,
with corresponding values of S . Cquation (14) is now used to find

A . the best value of A , with L =8

A= 6.40

14
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Equation (15) gives the standard deviation of A

S_=0.07

A
Thus, for the geometry of Test #29, the bracket H = 6.40 + 0.07 con-
tains the correct value of H with a probability of 67%. The bracket
H=6.40 + 0,14 contains the correct value of H with a probability

of 95%.

15




S

VI.

TEST RESULTS

The tests conducted during this program have established the
atress variations which arise when the simple slot configuration shown
in Figure 7-a is modified.by either changing the shape of the tip or
the slope of the slot walls. An extensive series of tests of the

(3)

simple slot configuration has been previously reported. Por com-
pleteness, the results are shown in Figures 9 through 14. The simple
slot configuration is characterized by three parameters: a/b |, aﬂD ,
and N . The variation of H as a function of 340 , with N and
a/b fixed is shown in Figures 9 through 13. A typical photoelastic
fringe pattern is shown in Figure 2. One of the more interesting
results of this study was that the variation of H as a function of

N , with aﬂD and a/b fixed, was of the form H ~ N-1/3 over

the range tested, except near the limit points a43 ~ 1 . (It is
clear that for all values of N and f) , when a = f) , the simple
slot configuration becomes a circular port.) This bzhavior is shown

in crossplots (Figure 14). The following empirical formula was derived

for H

H.\(:fg) /3 [1+2/ﬁ (16)

and as shown in Figures 9 through 14 fits the data within 5% for
AQO >4

16




In the present series of tests the simple slot configuration was

modified by
a) Widening the slot tips--see Figure 15.

b) Replacing the parallel slot walls with nonparallel
walls--both positive and negative angle--see Figures

16 and 17.

¢) Replacing the semicircular star tip with a semiellipse--

see Figure 18.

The following sections of the report give further details on the

configurations tested and the values of H observed.

17
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VII.

SLOT WIDTH FACTOR TESTS

A geries of tests was run to determine the effect of slot width
on maximum stress. The geometry is shown in Figure 15. It is completely
defined by the four parameters: N the number of star points, a/b
the port fractionm, a/f) fillet radius factor, and d/Zf) the slot
width factor. The majority of the tests were of configurations with
N =4 , In addition, 6 tests were made of corfigurations with
N ¥ 4 . The results of the tests with N = 4 are presented in
Figures 19 through 22 by holding d/2f) constant at integral values
from 2 to 5 inclusively and plotting H versus aqo for comstant

values of a/b .

The slot width factor is varied between the limit point, where
dIZF) = 1 , which represents a simple slotted grain (See Figure 8),
and the limit point where d is allowed to increasé to the value
d = 2a . These limiting geometries are shown in Figure 7. Both of
these limit points were established by means of photoelastic tests.
The limit point corresponding to d/2f) = ] 1is identical to the con-
figuration treated in Reference 3; however, 17 additional tests were
conducted to confirm the correlation between these two series of tests.
The other limit point was established by photoelastic tests on the
geometry shown in Figure 7-b. In this case the internal geometry is
a square with a finite radius of curvature at each corner. Due to the
close proximity of the outer boundary, an analytical solution is not

available. In lieu of this a parametric study was made. Two




parameterg were necessary to describe the square: a/b the port frac-
tion and aqb the fillet radius fector. The results of this study
are shown in Figure 23. The limit points required for this series may
then be determined from this cutvea. A typical photoelastic picture of
this limit configuration is shown in Figure 24.

The actual curves used t) present the data are obtained by holding
d/ZF) fixed and plotting the factor H as a function of a/fD for
several values of a/b . Each rember in the resulting family of curves
is located by 3 to 4 test pointy. In general the correlation of these
tests in establishing 2 single curve is excellent. It will be noted
that the iimit points are indicated by a vertical crossha}ched line
-and arz a finction of d/2f3 only. For large values of a/b the limit-
ing geomet:y cannot pe realized, as the limiting square is larger than
the outev circular boundary.

In general the curves are quite smooth except near the limit point
where a rapid increage in the factor H is indicated. Also it will
be noted that the factor H 1is significantly reduced for values of
dlzf) > 1 (with the exception of points in the neighborhood of the
limit points). Also, as indicated in Figure 25, a minimum value of H
is obtained for fixed values of the other remaining parameters. The
value of d/2f3 where this minimum occurs is not constant but is a
function of the other parameters.

In the simple slot tests for values of N from N=3 to N=8 ,

1/3

the empirical rule H = N was observed (See Figure 14). If the

same rule were to held for dlzf) ¥ 1 , then the results of the

19
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current series of tests could be immediately extended for N ¢ 4 .

To test this hypothesis a series of six tests for N =2, 3, 4, 5, 6,
and 7 was conducted with the remaining three parameters held constant
at d/2f) =3 , a/b=60n , aﬂg = 13 . The results of the tests
showing the variation with N are shown in Figure 26. The dotted line

1
indicates the curve which would be anticipated if an N 173

rule
governed the behavior. This curve represents the data particularly
well in view of the rather peculiar shape of the curve. The curve
shown has been drawn to give the best fit to all the data, rather than
to tie to the N = 4 results. The largest disagreement of the two
curves shown is 6%.

It would be advisable to make additional tests to obtain cross-
plots similar to Figure 26 for other fixed values of d/2f) , al/b ,

1/3

and 003 to determine the limits of applicability of an N rule.

This work however was not within the scope of this investigation.

20
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VIII.

POSITIVE WEDCE ANGLE TESIS

A series of tests was conducted to determine the effect of a
positive wedge angle on the stress factor H . The geometry used in
this series is defined in Figure 16. It is completely specified by
four parameters: N the number of star points, a/b the port frac-
tion, 340 the fillet radius factor, and ( the wadge angle. A
total of 63 tests were conducted for N = 4 ; a/b = 40%, 50%, 50%,
70%, and 80% ; QL = 10°, 20°, 309, and 40° ; and an appropriate
range of a/F) . In addition five tests were conducted for values of
N other than 4 to determine the effect of N .

The results for N = 4 are shown in Figures 27 through 3G. In

each of these figures (L and N have been held éonstant and H 1is

plotted as a function of a/f) for various values of a/b . Fach !
curve is defined by three test points and a limit point at a/F) =1 .
At this limit point the geometry reduces to a circular port for which
the value of the stress may be easily calculated. A typical iscochro-
matic fringe pattern for this geometry is shown in Figure 31.
1f these curves are compared to the simple slot tests of Figure 8,
which corresponds to this geometry with (L = 0 |, it {s cbserved
that even moderate positive wedge angles lead to significant reductions

in stress. This is clearly seen in the crossplots presented in Figures

s s

32 and 33, wvhere H 1is plottcd versus (L for various values of a/b

with 143 held censtant.
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The results of the testg showing the variation of H with N

e o

are shown in Figure 34. Again the stress factor H decreases as N

1/3

increases, and the N rule (dotted curve) is in reasonable agree-

ment with the data. ;

v v o b
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IX.

NEGATIVE WEDGE ANGLE TESTS

A series of tests was conducted to determinz the effect of a nega-
tive wedge angle on the stress factor R . The geometry used in thisg
series is shown in Figure 17. The definition of this geometry requires
four parameters. They are: N the number of star points, a/b the
port fraction |, alp the fillet radius factor, aand ;3 the wodge
angle. The wedge angle has been denoted by lg » 4 positive number, for
convenience. It will be noted that this ccrresponds to an extension
of the series reported in the previous section for negative values of
a .

Tests were conducted for N = 4 , «a/h :‘f07., 50%, 60%, 70%, and
80% , B = 10°, 20°, and 40° , and an appropt&#e range of a/P
An additional series of tests was conducted for values of N from 2
to 8.

A typical isochromatic fringe pattern is shown in Figure 35. The
results for N = 4 are shown in Figures 36 through 39. In each of
these figures, B and N have been held constant and H 1is plotted
as a function of n/p for various values of a/b . Bach curve is
defined by three test points and a limit point at alp = 1 . At this
limit point the geometry reduces to a circular port for which the value
of the stress may be easily calculated. The curve for B- 0 again
corresponds to a simple slot configuration (See Figure 8). The curve

for B = 30° has been obtained by finterpolation.
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The results of the tests showing the variation of H as a func-
tiou of N are <how: in Tigure 40. It will e noted that the stress

/3

decreases as N increases and that the N') rule (dotted lire)
clogseiy represents the data. This is particularly true for valuss of
N greater than 3. In the iimit when N = 2 , the disagreement is
only 6.7%. However it must be emphaeized that this validates this
rule only within the range tcsted.

Cro._splots of tha data are presented in Figures 41 through 43.
In these plots N and 843 arve held constant and H 1is plotted as
a function of [3 for various values of a/b . The limit point for
[3 - 0° corresponds to a simple slot configuration; the other
extreme, ﬁg = 90° , corresponds to a square with finite radius of
curvature at the corners. Both of these configurations have been
investigatad. I¢ 13 escen fromw these plots that the variation of H
as a function of /3 is relatively small for angles up to 50°.
Particularly notice that for smaller port fractions the value of H
is essentially constant for [3 < 45° . For this reason the curve

for [3 = 30° was obtained by interpolation of this data.
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X.

ELLIPTICAL SLOT TIP TESTS

The nature of the stress concentration at a star tip is determined
by the star tip geometry. In the case where the slot is terminated in
a gsemicircular tip, one point of stress concentration occurs, and it
is located on the centerline of the slot (Figure 2). On the other
hand, when the slot is terminated with a tip similar to those used for
the slot width effect tests, two points of stress concentration occur
(Figure 3). With these observations in mind, consider the nature of
the stress concentration where the slot is terminated by a semiellipse
(Figure 18). If we defire € to be the ratio of the minor axis of
the ellipse to the major axis of the ellipse, then as € —= 1 the
star tip approaches a semicircle (Figure 44), and a single point of
stress concentration would be expected. On the other hand, when €
is small (€ —= 0), the star tip resembles the type used in the slot
width effect tests, and two points of coacentration would be expected.
It is clear that at some intermediate value of € the transition from
one point of concentration to two points of concentration must occur,
and for this transition geometry the stress must be quite uniformly
Jdistributed around the tip. Intuitivzly one feels that this wore
uniform stress distribution, relatively free from concentration points,
wvill be a wisimm stress configuration.

To test this hypothesis, a series of tests was conducted with
elliptical star tip geometries, with vsilues of € =1, 0.8, 0.6, 0.4,

and 0.35. 1In all cases it was found that as € ig varied while all
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other parameters of the geometry are held constant, a configuration of
minimun stress occurs for a value of € in the range 0.35 < € <
0.70 . As anticipated, this minimum stress configuration is found

at the value of € where the transition from one concentration point
to two concentration points is occurring.

The geometry of a star grain with elliptical star tips can be
specified by four dimensionless parameters, a/b , N , 343 v,
and € ., The majority of the tests were conducted for N = 4 .
Typical fringe patterns ars shown in Figure 45. Curves of H (stress
factor) versus an' , for variou. values of a/b and € , are

shown in Figures 46, 47, 48, and 49. Crossplots of H versus €

for fixed a/b and aqo ' are shown in Figures 50 and 51. The 5
shaded area indicates the value of € at which a minimum H occurs.
In addition to the tests for N = 4 , several tests were con-
ducted for other values of N . The relationship between H and N
for fixed a/f)' , a/b , and € 1is shown in Figures 52 and 53.
The dotted line indicates the variation of H 1f the empirical rule

-1/3 were valid. The close agreement between the dotted

H~ N
curve and the experimental values indicatee that once again, within
the range tested, the N']’/3 rule adequately expresses the dependence
vE H on N . This indicates that the extensive results obtained
for N = 4 can be directly extended to N ¢ 4 .

A series of fringe pattern pictures is shown in Figure 45 to

illustrate how the transition from one point of stress comcentration

to two points cf concentration occurs @s € is varied. The pictures

|
l
|
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were taken with a load of 350 psi, and in each configuration N = 4 |
a/f)' = 5.5 , and a/b = 60% . Note in particular the uniform

stress along the star tip in Figure 45-c where £ 1is close to the

trangition value as compared to Figure 45-a or 45-d.
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XI.

APPLICATIONS

Internal Pressure

Maximum Stregs Calculations. In the introductory section it is
sﬁown that the test result can be applied to the case of internal
pressure pi and external pressure pé by superimposing a hydrostatic
stress state O_xx = O-yy = O-l = 0'2 = -pi . Thus, for this case,

= LI 1
Po ™ Py " Py and
Op = H(p; - p) - Py (17)

The factor H is obtained from the parametric curves and is equal to
- Oyl®,

If the grain is case-bonded, then to a good degree of approxima-
(6)

tion the case can be replaced by an equivalent uniform external

pressure p' where

p' = 3 (18)

2 2
[1 + (1 - 22/)(3) }+[(E) - 1] [1 * Ve ] Eb -
a a 1+ V JE¢t, |201-V)

In this equation tc is the thickness of the case and Ec and b;

describe the elastic properties of the case. The equaticn has been
derived for a thickwalled cylinder grain. The validity of this
equaticn becomes questionable for a star grain when the web becomes

thin. It is clear that 1f the web is thin the external pressura
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exerted by the case will not be uniform, and shear transfer between
case and grain may become appreciable.

Wher this equation is used to find p' for a star grain, a value
for a/b must be chosen which properly represerts the star grain as
an "equivalent thickwalled cylinder" (equivalent in the sense that p'
calculated using the chosen value of a/b 1is equal to the average
value of normal stress which the case exerts on the actual star grain).
The determination of an "equivalent thickwalled cylinder" is a key
step in the application of photoelastic test data to case-bonded star
grains. Engineering intuition dictates that the equivalent cylinder
lies betwecn an equel web fraction cylinder and an equal area cylinder.
The problem of choosing an equivalent cylinder will be pursued in
detail in a later section.

As 8 practical note for calculation purposes, it will be found
that when typical numerical values are substituted into equation (18)
the denominator will be approximately equal to 1, indicating that
P = Py . Since the stress calculation (equation 17) depends upon
the factor (p; - p'), p' must be accurately determined. Computa-
tional labor is minimized if the denominator 1is put into the form

1+ O . Then,

Py
p' = =p
1+A L

1 -0+ A%+ oD (19)

and an adequate expression for p' will be obtained in most practical

cases by retaining the first three terms in the expansion; i.e.,
-
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ZB < Zk . The value of lﬁ is easily calculated from the

expression
2
A b\" 1+z/c2 Eb
\a
2(1 - V) L-2V+ \15 7 |&x (20)

c ¢c

In those problems where L/ = 0.5 and Ectc >> Eb , this approach
will be found to significantly reduce the computaticnal labor. The

maximum stress (equation 17) becom.s

a-

- - [u( A- DY - 1] p, + 0(tp, ) (21)

Maximum Strain Calculations. The calculation of maximum strain
follows from equations (2). For the particular case of external
pressure p", and internal pressure pi , which includes case~-bonded
graing as indicated in the previous section, the maximum strain occurs

at the point of maximum stress and is given by

FEPEL4 [(1 -V + 2V J Pl + (V- L)} (22)

-

In terms of /\ for a case-bonded grain, this equation becomes

€ 2 3
-5-11-1—;-‘-’- a-vyhH- Am-q-2v) +0(§A) (23)

If V= 0.5 , then 6‘1‘ depends strongly upon H A, and

V . The dependence upon L/ 1is more clearly expressed by letting
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V =0.5 - 8 , 8 << 1 . Then equation (23) becomes

A SRS [&(A- A% + SA] H-20 p + o(§A3) + o(ﬂAZS) (24)
Py E E E

It is clear from this expression that under these conditions

( V= 0.5), accurate strain calculations require very accurate values

of )V and interface pressure p' . It is also clear that errors in
interface pressure are greatly magnified when H 1is large.

The extension of these calculations to the case of a linear
viscoelastic material is straightforward as long as the boundary con-
ditions are of the proportional loading type. The elastic constants
E and ) are replaced by appropriate differential operators and
integrations carried out where required. In particular, it should be
noted that equation (18) becomes a differential equation for p'(t) ,
and the time dependence of p'(t) will in general not be the same as
pi(t) . Thus, for a viscoelastic grain in an elastic case, the
assumption of proportional loading may ?ot be valid. Treating the
problem as one with proportional loadihﬁ introduces further approxi-

mation into the solution.

Thermal Shrinkage

If a case-bonded solid propellant rocket grain is strain free at
some reference temperature, say T = 0 , and if its temperature is

changed, strain will be induced due to two causes. First, strain will
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be induced due to the thermal expansion of the body. If the body is
unrestrained and the temperature is uniform from peint to point in

the body, then the body will remain stress free although a nonzero
strain field exists. If however the body is restrained in some marner,
these restraints will produce a stress field which then gives rise to
additional strains through the normal Hookean constitutive equations,

This is expressed in the following equations.

€rr '% Lo-rr -V O.ee + O-zz)] + a‘TAT
-1 ) ]
eee E _o-ee V(O;.z + o;‘r)_ +O'TAT
) ) (25)
«l -
€, "% |Tpe - V(T + Ogg)| +QOr

In each of these expressions fcr normal strain, we see the strain
arises from two sources, AT the temperature change and the induced
stresses. In these equations AT 1s the temperature change and ClT
is the coefficient of thermal exprausion. Note that the thermal portion
of the stress field affects onl; the normal stress-strain relations,
as thermal expansion causes no shearing strains.

Now consider the thermal stress problem in a long circular cylin-
dricel rockst grain with constant temperature change At , & thin

elastic case, and a concentric circular internal port. The assumption
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is made that the ends of grain are restrained in such a manner that

the problem reduces tn one of plane strain; i.e., 62, =0 . The ?

equation

1

n ihe propeliant are:

!
1]
L
[
"
()
[+
0
1]
re
e
[¢]
0
o
[0
-]
Q.
(1]
rr
L]
-]}
fa
=
o

- - -—-?-'———-——[1 - 32/1'2.1

rr (1 - a2/b2) i
g = - ___P.'.__..__(:l + a/rl

©6 a - aZ/bZ) ]

2Vp'
o, =-—=FF __ _ g A1
zz a - azlbz) T
(26)

€ =. QrVp' -(1 - 2V) - az/rz] + (1 + V)AAT
i E(1 - a2/b2) | '

€ =. U0+Vp
96 E(l - 82/b2)

(1-2v)+ azltz] +a+ V), A

[1 - (%)2] [ T—E—P-] L(l + V)aur - (1+ Uc)ac] At

2 2. 1. 12
@) +r-2ve - ) )i

p =

It should be noted that in the above set of equations the stresses
O’n and O"ee result from the term involving the interface pressure

p' only. That {s, the two-dimensional stress field is compnletely
equivalent to & pregsure problem with the value of the external pressure
being given by p' of the above set of equations.

It should be noted that the abcve expression for p' does not

agree with the expressions given in Raference 6 and Refzrence 9.




This p' has been based on the asgumption ezz « 0 where Gzz is
the total 2z strain; i.e., mechanical strain plus thermal strain.
The referenced reports give a value for p' based on holding only
the mechanical part of ezz zero.

When the internal boundary is not a circular port, it is not possi-
ble to write expressions for the stress field similar to the pressure
problem. The assumption is made that the effect of the case may be
replaced by a uniiorm pressure given by p' of equation (26). Here
again an equivalent circular port grain must be selected to calculate
p' . In this case the equal web fraction would yield a lower bound on
the stress while the equal area equivalence would yield an upper bound.

Strain calculations are most readily made by first calculating
the complete stress state using equation (17) to calculate the maximpum
tangential stress, the internal boundary condition to calculate the
normal stress, and the condition of plane strain for the axial stress
[i.e.. €,, = 0 , which implies C,, = V(Op + O)) - EQ.TAT] .
Once the stresses are known, the strains uay be determined directly
from equation (25). It should be noted that the expression given for

maximum strain in equation (22) is incomplete when thermal strains

are considered.

1lind

Recently the results of a limited number of computer solutions

of case-bonded and free star grains, loaded by pressure and thermal

34

e A st e e 1T e c e e ————————————r-




Sae s CWRIAR S5 A, R .

loads, have been published by Becker and Brisbane.(7) Comparing these
results with the ones obtained using photoelastic data and the tech-
niques outlined in this report, one finds remarkable agreement for the
free grain for both stress and strain. For case-bonded grains, the
maximum stress calculations show good agreement when p' 1is based on
an equal web fraction equivalent. However, as indicated in a previous
section, considerable error can occur in the strain calculations,

especially for large values of H and V = 0.5 since the strain

calculation is particularly sensitive to errors in p' . 1In the

examples of Becker and Brisbane, ¥ = 0.4987 and 11 € H < 18.2
In more typical configurations 4 < H < 10, so that these examples
probably indicate an upper bound to the expected error.

Using the examples of Becker and Brisbane and the example from
the Numerical Example Section of this report, tentative rules for
finding a better "equivalent cylinder" can bc derived. The examplaes
show that the correct equivalent is much closer to equal web fraction
than to equal area, indicating thst the portion of the star grain
material inside an equal web fraction cylinder is not effectively
utilized in providing hoop stiffness. The area of this ineffective
material is proportional to [fa/b)a - (u/b): ] vhere (a/bly
refers to an equal web fraction equivalent and (nlb)A refers to an
equal asrea equivalent. By considering this area to be 20% effective
in increasing hoop stiffness, considerable fmprovement in the accuracy

of etrain calculations is obtazined. In other words, for purposes of

calculating the interface pressure p' , asn equivalent cylinder




(a/b)E is calcuviated as follows:

2 2 2}
(alb), = [(a/b), - 0.20 {(a/b), - (a/b) 5 (27)

A

)
The stresses and strains calculated using (a/b)w . (a/b)A , and
(a/b)g are tabulated in Table II along with the corrasp~ ding computer
solutions. In these examples, when (a/b)g 1. used ro calculate p' ,
the maximum errar in stress 1s less than U8 &nd the maximm ervor in
strain is less than 15%. Additiotial cornarison proulems would be
useful to verify the validity of the wethod. However, based on the
information at hand, it would appesr that the use of (a/b}E offers

considerable improvement over {s/L) _  or (a/b)! .

w

Numerical Example

Internal Pressure. A numerical example will be presanted to
illustrate the dependency of the maxiewsr tirsss {or strain) on tha
choice of the "equivslent™ circular pert grain. Assume that the cross
section of the grain ie of the simple slot family shown in Figurc 7-a

vith the following values of parameters:

Ne=a a/zp =1

a/b = 66.7% ;43 = §

Hence from Figure 8 the value nf the stress {actor is detarminad to

be H=9.6 .
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Assume the following properties for the propellant and the case:

T = 30 x 105 psi E = 103
Y = 0.30 V= 0.49
t, = 6.06" b = 3"

This problem is identical to the problem vsed to rompare computer
solutions obtained by MSC and by Rohm and Haas. (8) Thug the maximum
tangential stress and strein are known frem an iandependent source and
can be compared tc the results obtained uging the much siapier methods

of this report. The computer solutione gl .

e

G:I/pi = - 00698

oW A Wi

€ T'lpi = 2.0 x 10—4/'?31

In other words, for an internal pregsure of 100 psi, the maximum tan-
gential stress is Op = - 69.8 psi and the maximum tangential strain
is €T'27° .

To illustréte the dependence of the solution on the proper choice
of an "equivalent cylinder," the soiution will be obtained using the
equal web fraction equivalent, the equal arcu equivalent, and the
effective area equivalent defined by equation (27).

For the equal web fraction equivalent, (a/b)w = 0.667 . Sub-
stituting this value into equation (20), the pressure fector A can

be calculated as follows

A = 0.02¢0

38




In this example, since [53 << A , the use of ouly the first two

terms in the series is completely justified.

The average interface pressure exerted by the case on the grain

can be calculated using equation (19)
p' = p;(1 - [A - A?‘])
= 0,9747 Py

Thus, for this example, the internal pressure is transmitted with very
little loss to the case. This is a typical result for LV = 0.5 end
a relatively stiff case (i.e., Eb/Eth << 1),

The maximum tangential stress (tangent to the gtar boundary) is

calculated from equation (21)
fo = - 0,757 1
The maximum tangential strain is calculated from equation (24)
-4
O-T = 1,5 x 10 pi

Thus the tangential stress is negative (compressive) while the tan-
gential strain is positive. It should be emphasized that this stress
1s the ~aximum (ahbgolute value) value of tangential stress which occurs
at the star port surface. The term tangential is used to indicate the
direction parallel to the star boundary at the point where the maximum
occurs and does not in general mean the “69" directibn, although in

this particular example (simple slot) the two directions do coincide.
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This maximum tangential stress is not necessarily the maximum stress
occurring at the point. In order to check this, the other two princi-
pal stresses must be calculated using the boundary condition CT; =

- py and equation (3)

T,, = V(O + o_yy) =/ (0, + Oyp)

The three-dimensional state of stress for p; = 100 psi 1is shown

“elow

O_zz'-" V(O-n+ O-T) = - 86

| ,,”///
i 7
I »
—-e o—tf—— Op = - 75.7
|
//x,L-——--
A
g, = - 100 |
g, = - 86

zz

In this example Oy 1is the smallest (in absolute value) of the
principal stresses.
The same example is now worked out using the equal area equiva-

lent. The port area of the grain is found to be

A= 3.64 in?

40




SN 5% Srotm.t - v 5. 1+ e s

- o A

Thus an equal port area circular port grain would have a port radius

a=1.08

Je (a/b)A = 0.36

The pressure facter /\ is calculated from equation (20)

it ot A T IO A I

A =0.139
Thus the interface pressure p' (equation 19) is
' -
P 0.88 Py
Equation (21) aow gives

CT& = 0,122 Py
The strain E.r is again calculated from equation (24)
€. =38.28 x 10-4 P
T ' i

Note that the calculation based on equal port area gives a very poor
estimete of both stress and strain.

As a final example, the calculation will be repeated using the

[ e

circular port equivalent defined by equation (27)

(a/b)g = 0.618
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The pressure factor D is again calculated from equation (20), using

a/b = 0.618 .

A\ = 0.0336

From equation (21)

CYT = - 0.688 Py

and from equation (24)

€ =2.08x10"%p

T i

In this particular example, when (a/b)E is used to calculate p' ,
the error in stress is 1.4% and the error in strain is 4%, assuming
that the computer solution is correct. In all of the compariscn
problems known to the authors at the pregent time, (a/b)E yields the
best estimates of stress and strain for a case-bonded grain when com-

parad to the computer solution (Table II).

Thermal Shrinkage. The result of a computer solution for the
thermal shrinkage problem can be found in Reference 7. The configura-

tion is a simple slot four star grain with the following parameters:

a=8§8 in tc = 0,15 in

b =10 .n E. =30 x 106 psi
O = 0.5 in Y, = 0.3
E=3x10° psi Oty = 6.5 x 107/°F
V= 0.4987 o, = 6.0 x 1075/
H = 18.2 (from AT = - 100°F

Figure 8)
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The computer solution gives the following values for maximum tangential

stress and strain
O'T = 312 psi

GT = 8.15%

For comparison purposes, this problem will be worked out using
the methods of this report. To find (a/b)E , note that (a/b)w =

0.8 and (a/b)A = 0,318 . Thur using equation (27)

(a/b)g = 0,729

Using this value in equation (26), the value of p' 1is:

p' = - 15.8 psi

e bty o =

The maximum tangential stress is now calculated using equation (17)

with external pressure p' and internal pressure Py ™ 0

Or = 285 psi

This value is in good agreement with the computer solution. On the
other hand, when (a/b)w or (a/b)A ig uged in the calculation, the

corresponding values of Cﬂr are
CT& = 182 psi (equal web fraction)

cri = 2,760 psi (equal area)

43




To continue with the solution, CT; and (7;2 are now calculated.

Since the internal pressure is assumed to be zero, (3; = (0 and
C,, = V{0, + O,) - EA AT
= 163 psi
The tangential strain can now be calculated from equations
e 30 Ve s o] anl
= 7.46 x 1072

= 7.46%

Thus the strain, calculated using (a/b)E , 18 in error 8.5% for this

problem, assuwming that the computer solution is the correct solution.
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XII.

EMPIRICAL REPRESENTATION CF EXPERIMENTAL DATA

As was indicated earliar in the section on test results, the
data obtained for the simple slot configuratisn of Figure 7-a may be

represented by the empirical equation

- n-1/3 + b .
B= N fAE 142 el ] (28)

It would be desirable to determine similar empirical relation-
ships to represent the data for each family tested. It has been shown
in the previous sections that the variation with N 1is adequately

described by the N-ll3

rule.

Inspection of equation (28) indicates that if N and (a/b) are
held constant that a plot of H versus \/;ﬁg would yield straight
lines. This may be seen in Figure 54.

For the slot width effect tests it was shown that the dependence

on N-1/3

held (see Figure 26); however, no additional simple func-
tional dependency has beer observed.

For the positive wedge angle tests the N'1/3 rule was shown
to hold (Figure 34), and the dependence on the fillet radius factor

may be seen in Figure 55. It is seen here that the functional form

for the empirical relationship is:

= N3 [cl(a, a/b) + ¢, (QL, a/b)\/'/p ] h(Q, a/b) (29
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indicating that the dependence on \/:%5- is linear. This is also
true for the negative wedge angle family and the elliptical slot tip
family as may be seen in Figures 56 and 57.

Judging from the results shown in the figures, it is seen that
the functional dependency of H on the parameters N and 343 for
the simple slot, the positive wedge angle, the negative wedge angle,
and the elliptical slot tip tests is adequately represented as des-
cribed above. The task then remains to determine the unknown func-
tional form (f equati»n (29) for the latter three familes. This work

is presently underway and will hopefully be reported in & later report.

46




e — Yot —— =

R ke

XIII.

CONCLUSIONS

Parametric photoelastic investigations of four families of
internally perforated rocket grains have been conducted. The results
are presented in graphical form showing the stress factor H as a
function of the four geometrical parameters necessary to describe
each family. Good correiation of these data with previous work of
the authors and analytical and numerical solutions is shown.

Methods of applying the experimentally obtained data to other prob-
lems of interest have been discussed. In particular the problem of a
case-bonded grain subjected to both pressure and thermal loads has been
considered. An engineering "rule of thumb" is suggested which allows
quite accurate calculations of the stress and strain problems considered.

A limited number of numcrical solutions for problems similar to
those discussed here have recently been published in Reference 7. A
comparison of these and all other known numerical solutions was made
with those obtained using data obtained from this study. In general
good agreement was obtained. In all cages the disagreement was less
than 10% in stress and 15% in strain.

Empirical formulas are derived in some cases to represent the
variation of the stress factor as & function of the various parameters.
In all cases the variation with the number of star points has been

1/3

shown to be N~ In all cases other than the slot width tests

the functional dependency oa the fillet radius factor has been shown

to be linear with \/140 .
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FIGURE 2

ISOCHROMATIC FRINGE PATTERN
FOR TYPICAL SIMPLE SLOT CONFIGURATION
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N = 4,

FIGURE 3

ISOCHROMATIC FRINGE PATTERN
FOR TYPICAL SLOT WIDTH TEST CONFIGURATION

d/2p =2, a/b = 70%, alp =7.98, H = 8,46
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n ~ fringe order at center
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imple Slotted Grains
d/2p = 1 (NOTS Data)
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Limit Squarcs

FIGURE 7
GEOMZ(RY OF LIMIT CASES
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FIGURE 14

EFFECT OF NUMBER OF SLOTS

28 ON STRESS AT STAR POINT
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FIGURE 15

GEOMETRY OF TYPICAL CROSS SECTION
FOR SLOT WIDTH EFFECT TESTS
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FIGURE 16

GEOMETRY OF TYPICAL CROSS SECTION
POR POSITIVE WEDGE ANGLE TESTS
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FIGURE i7

GEOMETRY OF TYPICAL CROSS SECTION

FOR NECATIVE WEDGE AMGLE TESTS
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FPIGURE 18
GEOMETRY OF TYPICAL CROSS SECTION
FOR ELLIPTICAL SLOT TIP TESTS
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\ FIGURE 23
¢ SLOT WIDTH EFFECT
! LIMIT POINT TESTS
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FIGURE 24

ISOCHROMATIC FRINGE PATTERN FOR LIMITING SQUARE

a/b = 60%, a/p =8.72, H = 19.6
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EFFECT OF SLOT WIDTH FACTOR

N =4,

FIGURE 25

a/b = 70%, a/p =12

d/2p
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FIGURE 31

ISOCHROMATIC FRINGE PATTERN
OF TYPICAL POSITIVE WEDGE ANGLE CONFIGURATICN

Ne4, a= 20° /b = 70%, a/p = 15,12
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FIGURE 33

POSITIVE WEDGE ANGLE TESTS

a/p = 18

N =4,
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FIGURE 35

ISOCHROMATIC FRINGE PATTERS
OF TYPICAL NEGATIVE WEDGE ANGLE CONFIGURATION

Ne=24% p=2°, a/b=58%, a/p = 6.33, H = 7.22, p, = 300 psi

(NOTE: Digtortion of fringe pattern on bottom extremity of model
was due to delamination of lans in cptical bench.)
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FIGURE 41

NEGATIVE WEDGE ANGLE TESTS
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NEGATIVE WEDGE ANGLE TESTS
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FIGURE 44

DETAIL OF ELLIPTICAL SLOT TIP GEOMETRY
FOR VARIOUS ECCENTRICITIES
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FPIGURE 45
VARIATION OF ISOCHROMATIC FRINGE PATTERN WITH ECCENTRICITY

P, = 350 psi, a/b = 60%, 2p = 0.5"
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FIGURE 54

SIMPLE SLOT TEST
N=6,
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